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We study the dynamic scaling properties of systems with a conserved order parameter with O(n)
symmetry, using the Gaussian auxiliary field approach of Mazenko [Phys. Rev. Lett. 63, 1605
(1989); Phys. Rev. B 42, 4487 (1990); 43, 5747 (1990)]. Results valid in the limit of large n, and
for finite n, are presented. An explicit numerical solution to the full fourth-order nonlinear equation
for the real-space scaling function f(z) is obtained by truncating the equation at leading nontrivial
order in 1/n. In Fourier space the results are in very good agreement, for n as small as 5, with
approximate analytic results for the scaling structure deduced by Bray and Humayun [Phys. Rev.
Lett. 68, 1559 (1992)] from a large-n analysis. Two approximate schemes have been introduced to
treat the finite-n problem. The first, an expansion to order f3, reduces the differential equation to
one that is similar to the 1/n expansion, with n replaced by an effective n*. The scaling function
and structure factor for n = 2, d = 3 are in excellent agreement with recent simulation results.
This approach respects the conservation law, but the correct large-g behavior (“Porod’s law”) of the
structure factor is not recovered. In the second scheme, the large-q tail is recovered at the cost of
violating (weakly) the conservation law. The real-space scaling function has the same qualitative
features as the simulation results for n = 2, d = 3, but is not as quantitatively accurate as the
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previous approach. For n > 5, both schemes produce very similar results.

PACS number(s): 64.60.Cn, 64.60.My

L. INTRODUCTION

The dynamics of phase separation in systems quenched
from a high temperature disordered state into an ordered
region of the phase diagram is an area of great activity
[1].

Recently, there has been an increasing interest in the
study of the dynamics of phase ordering in systems
with more complicated symmetries, e.g., the O(n) model,
which is described by an n-component vector order pa-
rameter [2,3]. One approach that has been successfully
applied in recent years to study such systems is the Gaus-
sian auxiliary field method introduced by Mazenko [4],
following earlier work by Ohta, Jasnow, and Kawasaki
for nonconserved scalar fields [5]. This approach allows
one to find an approximate closed equation for the evo-
lution of the pair correlation function for the order pa-
rameter field. Although the dynamic scaling properties
of systems with nonconserved order parameter have re-
cently been studied [2] using this approach, much less is
known for the corresponding properties in systems with
conserved order parameter. The aim of the present pa-
per is to use the Gaussian field method to explore the
dynamical scaling properties of systems described by a
conserved vector order parameter.

A central concept in the dynamics of phase ordering
is the characteristic length scale L(t), which grows with
time as a power of the form L(t) = t'/%. The value of the
dynamical exponent z has been determined by Bray using
a renormalization group (RG) analysis [6], with the result
z = 3 for a conserved scalar order parameter, confirming
earlier predictions, whereas z = 4 for a conserved vector
order parameter. Recent work by Bray and Rutenberg
(BR), using an “energy scaling” argument [7], recovers all
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the RG results but with an extra logarithm for conserved
fields with n = 2, which is a marginal case in the RG
analysis. Thus BR predict L(t) ~ (tlnt)*/* for n = 2
(and d > 2), while L(t) ~ t'/* for n > 2.

A consequence of the assumption that L(t) is the only
characteristic scale at late times (the “dynamic scaling
hypothesis”) is that the two-point correlation function of
the order parameter, C(r,t) = (¢(x,t)¢(x +r,t)), where
() indicates an average over both initial conditions and
thermal noise, takes the scaling form

C(r,t) = f(r/L(¢)) , (1)

while its Fourier transform, the structure factor, which
can be measured in scattering experiments, has the cor-
responding scaling form

S(k,t) = [L(®)]"g(kL(t)) , (2)

where g(y) is the Fourier transform of f(z). One re-
maining issue is to determine the shapes of the scaling
functions and their properties for systems with continu-
ous symmetry, when the order parameter is a conserved
vector quantity.

Coniglio and Zannetti (CZ) [8] solved the conserved
O(n) model exactly in the large-n limit. They found
that the structure factor does not exhibit the standard
dynamic scaling form (2). Instead, they find a “multi-
scaling” solution with two, logarithmically different, di-
verging length scales. It should be noted that the CZ
solution is strictly valid for n = co. Bray and Humayun
(BH) [9], using the Gaussian auxiliary field method of
Mazenko, showed that introducing the 1/n correction to
the equation of motion removes the multiscaling and the
standard scaling solution is recovered. They also derived
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an expression for the scaling structure factor valid for
large, but finite, n.

In recent work, Siegert and Rao (SR) [10] simulated
numerically a Langevin equation for a three-dimensional
XY model (n = 2) with conserved order parameter.
Their results show no indication of multiscaling, being
consistent with standard scaling and the known value,
z = 4, of the dynamic exponent. Indeed, a reanaly-
sis of their data [11] shows excellent agreement with the
(tln t)l/ 4 growth predicted by BR. Moreover, they note
that the real-space scaling function is already quite well
described by the large-n form of BH.

In the first part of the present work, we extend the
analysis of BH, solving the full nonlinear differential
equation for the scaling function f(z), truncated at order
1/n, but without the restriction that n must be large.
Our results are compared with the analytical solutions
for the structure factor deduced by BH. The results are
well described by an approximate form [Eq. (21)] for the
scaling function g(g), motivated by the large-n result of
BH.

In the second part, using the equation for the corre-
lation function, which depends on the second moments
of the Gaussian field, we derive a closed equation for
the correlation function C for finite n up to order C3.
The O(C?) term is the leading correction that must be
included in order to recover standard scaling. In par-
ticular, for the case n = 2 our results are in excellent
agreement with the simulation results of SR. Finally, the
finite-n case is reconsidered in order to introduce the cor-
rect asymptotic behavior (“Porod’s law” [2, 12-14]) in
the structure factor. This is done by solving the differen-
tial equation for the correlation function of the Gaussian
auxiliary field, and using the result in the mapping func-
tion that relates it to correlation function for the physical
field. This mapping function feeds in the information re-
lated to topological defects in the system, these defects
being responsible for the Porod tail in the structure fac-
tor.

II. MAZENKO’S APPROACH

A closed equation for the order-parameter correlation
function can be obtained using the Gaussian auxiliary
field method introduced by Mazenko [4]. The application
of this approach to conserved vector fields is a straight-
forward extension of the nonconserved case [2]. We begin
with the equation of motion for conserved order param-
eter with continuous symmetry,

d(1) - oV (#(1))

where 1 represents the space-time point (z1,t;1), and
V(¢) is a generalized potential with ground state given
by a manifold connected by rotations. The n = 2 case
is the well-known “Mexican hat” potential. Taking the
scalar product of Eq. (3) with ¢(2) [the order parame-
ter at the point (x2,t2)] and taking the average over the
ensemble of initial conditions yields

3)

ac(12)
at,

=-V? (VZC(lz) <6—V(5‘2@ -¢(2)>> .

(4)

Translational invariance ensures that the two-point, two-
time correlation function C(12) = (¢(1) - $(2)) depends
on the spatial coordinates only through r = |z(1) —z(2)|.

The key idea in the Mazenko approach is to introduce
a Gaussian auxiliary field m, which is related to ¢. Then
it is possible to calculate the average on the right-hand
side of Eq. (4). In the late stages of growth, the order
parameter ¢ will lie on the ground state manifold except
in the neighborhood of topological defects. A convenient
choice for the auxiliary field is defined by the solution
of the differential equation V2 ¢ = 8V (¢)/ 8¢, with the
boundary conditions ¢(0) = 0 and ¢ = m = m/|m|
as m — oo. Then the vector m can be regarded as
a coordinate in space normal to the defect. With the
assumption that m can be approximated by a Gaussian
random field, the average in the second term of the right-
hand side of Eq. (4) can be evaluated to give [2]

9C _ afos dc

where a(t) = (m(1)2)71, the inverse of the second mo-
ment of one component of m, and

v =7(12) = (m()m(2))/{([m(1)]*)([m(2)]*)}*/?

is the normalized two-point correlation function of m.

The relation between C and + is obtained from
C(12) = (m(1) - m(2)). The detailed calculation was
done in [2,12,13] and the final result is

ny n+1 1\]? 11 n+2 ,
c=2le( )] FGrr).  ®
where B(z,y) is the beta function and F'(a,b,c; z) is the
hypergeometric function.

Equations (5) and (6) define a closed set of equations
for the correlation function. The simplest way to pro-
ceed is to rewrite Eq. (5) as an equation for v and solve
it numerically. The solution is put back into (6) to fi-
nally obtain the correlation function. One important
feature is that a scaling solution to Eq. (5) captures the
correct characteristic length L(t) = t'/%, and requires
a(t) ~ t~/2, [However, it fails to pick up the expected
logarithm in L(t) [7] for n = 2, while the derivation of the
t1/3 growth for scalar fields using this approach requires
an explicit introduction of the bulk diffusion field [4].]

III. 1/n EXPANSION

In the large-n limit further progress can be made, from
Eq. (6), by performing an expansion in 1/n. This gives
C = y—v(1-~?)/2n+0(1/n?), implying vdC/dy = C +
C3/n+0(1/n2). Thus (5) becomes a closed equation for
C. For the equal-time correlation function, an additional
factor of 1/2 is required in front of the time derivative,
giving, correct to O(1/n),
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The alert reader may notice the original motivation
behind this approach, namely, the inclusion in a natural
way of the appropriate topological defects, seems to be
lost for large n, since there are no stable singular defects
for n > d. Nevertheless, Eq. (7) seems to capture much
of the important physics. In particular, the nonlinear-
ity inherent in (5) for finite n is essential in recovering
conventional scaling. In Sec. IV we will show that ex-
panding in C, with n arbitrary, gives an equation of the
same form as (7) but with n replaced by an effective value
n*. Furthermore, including only the leading nonlinearity
gives very good agreement with the simulation results of
SR for d = 3, n = 2. First, however, we consider the case
of n strictly infinite.

A. Multiscaling solution for n = oo

The limit n — oo in Eq. (7) leads to the equation
solved by CZ and its solution gives rise to multiscaling be-
havior. The CZ equation can easily be solved in Fourier
space for the structure factor S(k,¢). This is given by

1dS(k,¢)
2 dt

The solution is S(k,t) = A exp[r(k,t)], where r(k,t) =
—2k*t + 2k28(t) with B(t) = fot dt' a(t') determined self-
consistently from the condition ), S(k,t) = 1. The ini-
tial condition A is assumed to be independent of k.

For large ¢, the sum is dominated by values of k close
to k., the maximum of 7(k,t), where the structure fac-
tor is sharply peaked. It can be evaluated using the
method of steepest descent, giving k., = [3(t)/2t]'/? and
7(km,t) = (B2%(t)/2t. Expanding the summand around
ky, using r(k,t) = B%(t)/2t — 48(k — k)2 + ---, and
integrating, we find that the condition for G(t) is

2\ %5 B 2
1=0Cy (%) t~1 exp (%) s (9)

where Cj is a constant whose explicit value is not rele-
vant, and d is the spatial dimension. Solving the above
equation for large ¢, the region of interest, gives

= —[k* — K2a(t)]S(x, t). (8)

B(t) ~ (% lnt) , (10)
implying
dInt i

Finally, the structure factor can be written, up to con-
stants, as

S(k,t) = (Int) 5" L(t)%G5), (12)

with ¢(z) = 1 — (22 — 1)2. Thus S(k,t) depends on two,
logarithmically different, length scales: L(t) = t1/4 and

k! ~ (8t/dInt)'/%. Equation (12) represents “multi-
scaling” behavior [8] because the exponent of L(t) de-
pends continuously on the ratio k/ky,.

B. Scaling solution for finite n

Here we show that retaining the O(1/n) term in (7)
leads to a solution in the standard scaling form. We
summarize briefly the analysis of BH, as it provides the
framework for the rest of the paper. If (7) is written
in terms of the scaling function f(z) defined by Eq. (1),
with L(t) = t'/4, and the Fourier transform is taken,
the following equation for the scaling function g(q) [the
Fourier transform of f(z)] defined by Eq. (2) is obtained:

dg d 3 2 )

—=—|—-—+8¢"—-8 +q¢B(q) . 13

dq (q q 94 | 9 +9B(q) (13)
Here B(q) = 84¢%,(f%)q/n, (f3)q means the (d-

dimensional) Fourier transform of f3(z), and «(t) in (7)
was written as g2, /t'/? consistent with t}/4 growth. We
will see that g,,, is the position of the maximum in g(g).

BH showed that for n = oo, when the B(gq) term is
dropped, the attempt to find a scaling solution fails due
to a nonintegrable ¢~ singularity in g(g) at small g. The
absence of a scaling solution in this limit agrees with the
CZ result. But for any finite n, no matter how large,
a standard scaling solution is consistent with (13). A
formal integration of (13), with initial condition g(0) = 0
(as required by the conserved dynamics), gives

9(q) =9~ exp(—2¢* + 4¢2,¢°)

q
></ dq' ¢**'B(q’) exp(2¢’* — 4¢%,¢"*) . (14)
0

For ¢ — 0 the integral is sensible, giving g(q) =~
B(0)g?/(d+2) where B(0) = (842, /n) [ d%z f3(z), which
is nonzero.

BH show that ¢,, — oo for n — oo, and use this
property to evaluate the integral. For large g,, the in-
tegral will be dominated by ¢’ of order 1/g,,, provided
1/gm < q¢ < V2¢m [which includes the vicinity of the
maximum in g(g), at ¢ = gn]. Then the ¢2,¢’? term in
the exponential factor in the integrand dominates the ¢’4
term, so we can replace B(q') by B(0) and extend the
upper limit of the integral to infinity. This gives

d
x exp(—2¢* + 442,4%), (15)

which is valid in the interval 1/¢,, < ¢ < V2¢,. In
essence this is a large-n solution.

The constant g, is determined by the condition that
f(0) =1 or equivalently 37 g(¢q) = 1. The sum is evalu-
ated by steepest descent and the condition is

1 = 27 (@45 /onk,T (1 + g) 2.\ exp(2¢2,) B(0),

(16)
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where kg = 2/[I'(d/2)(47)%/?]. This equation relates g,
and B(0). Substituting B(0) from Eq. (16) into Eq. (15),
the final form for the structure factor is obtained:

4

— 2 -
a(q) rav/as Imd

We stress that this is valid for 1/q,, < ¢ < V2¢qm. -
When g,,, = oo the function (17) becomes a properly
normalized § function:

9(9) = k3 ap %6(a — gm) (18)

and the real-space scaling function takes the form

d

exp[—2(¢® — ¢%)7]. (17)

Ju(‘]mx)
(gmz)

with v = (d — 2)/2 and J, the Bessel function.

Finally B(0) = 8¢2, [dzf(z)®/n ~ caq? ?/n, with
cq a constant. Using this result in (16) gives a closed
equation for g,,, valid for large g,,, with solution ¢,, ~
[(Inn)/2]*/%.

We have noted that (17) is a representation of a spher-
ical § function, as in (18), for g,, — 0o. Another repre-
sentation is the Gaussian form to which (17) reduces for
g = gm| < gm, e,

fl2)=2"T(v+1) , (19)

alg) = kdjz—ﬂqun"d exp|—842, (¢ — gm)?] - (20)

Since g(q) is vanishingly small when |g—gmm| > 1/¢,, this
form should be accurate for large q,,,. Note, however, that
since g,, grows very slowly with n, i.e., g, ~ [(Inn)/2]/4,
extraordinarily large-n values are required to achieve
quite moderate values of ¢, e.g., ¢, = 10 requires
n ~ 108686 In practice, therefore, the difference between
(17) and (20) will be important when fitting data for all
reasonable values of n. The most obvious difference is an
asymmetry about ¢ = ¢y, in (17): the function decreases
more rapidly for ¢ > ¢,,, than for ¢ < ¢,,.

These two functions play a large role in our following
discussions. First, let us consider the more general forms

(o) = dexp (€21 (21)

202

and
g92(q) = Aexp (—M) - (22)

We have introduced three adjustable parameters, the am-
plitude A, the position ¢,, of the maximum, and some
measure o of the width. Since the real-space scaling
function satisfies f(0) = 1, only two of these are inde-
pendent. The particular choice (22) has the advantage
that its Fourier transform can be evaluated analytically
for ¢, > o,

where p = ¢z, A = qn/o, fo = [1 + 1/A%]71, and
¢ = tan~'(p/A%). This form is valid for A > 1: the

error is of order exp(—A2?/2). By contrast, Eq. (21) does
not have a simple analytic form in real space. We shall
find, however, that it gives a significantly better fit to
structure-factor data than (22).

In the limit of large n, comparison of (21) and (22) with
(17) and (20), respectively, suggests that 1/202 should
approach 2 and 8¢2,, respectively.

C. Real-space scaling analysis

For a real-space analysis, we return to Eq. (7). Setting
a(t) = a/t'/2, and C(r,t) = f(r/t}/*), (7) becomes

1 d 3
§x£=V§|:V§f+a(f+~f;)], (24)
2 —
where V2 = %4—%%.

In principle, we would like to solve the full nonlin-
ear equation (5), with C(v) given by (6). In practice,
however, the solution presents formidable numerical dif-
ficulties [mainly associated with the singularity of C(v)
at v = 1], which we have not been able to overcome
satisfactorily. Instead, therefore, we address initially the
simpler problem of solving (24), in which the right-hand
side of (5) has been expanded to order 1/n, the lowest
order consistent with simple scaling. However, we will
no longer regard n as large in (24), but solve numerically
for general values of n. In practice, a minor modification
of this procedure (see Sec. IV), in which n is replaced
by an effective value n*, gives results in good agreement
with simulations even for n = 2.

The fourth-order nonlinear equation (24) must be
solved with the appropriate boundary conditions.
Small- and large-z analyses enable one to obtain
the boundary conditions at £ = 0 and the asymp-
totic behavior. Inserting a power series solution
of the form f(z) = 1+ Y, _,B-2", and keep-
ing terms to order z%, we obtain the expansion
fl@)y=1+B2%—(1+3/n)aBz*/4(d+2) +--- where
B2 has been redefined as 3. So, the required four
boundary conditions for the numerical integration of the
fourth-order equation are f(0) = 1, f(0) = 0, f"/(0) =
28, f""(0) = 0, where the parameter 3 is, however, un-
determined.

Since f(z) vanishes for large z, the large-z solution can
be obtained from the linearized version of (24). Of the
four linearly independent solutions, one is f(z) = const,
while the other three include two physical solutions,
whose asymptotic forms (correct to the leading exponen-
tial terms) can be combined as

f(z) ~ Aexp(—3z*3/16) cos(3v/32%/3/16 + ¢)

(with ¢ an arbitrary phase), and one unphysical expo-
nentially growing solution, f(z) ~ B exp(3xz%/3/8).

Our equation has two undetermined parameters, o and
3, the latter entering through the boundary conditions.
As the scaling function f(z) must vanish at £ = oo, these
two parameters are determined by the boundary con-
dition that the unphysical constant and exponentially
growing solutions of the linearized equation should be
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absent at large . Thus the problem is defined as a non-
linear eigenvalue equation, with eigenvalues o and 3. A
similar situation is familiar from the analogous treatment
of nonconserved fields [2], but with only one eigenvalue
to determine in that case. The two-eigenvalue case is also
encountered for conserved scalar fields [4].

The existence of an increasing exponential makes the
eigenvalue determination more difficult, and the standard
numerical procedures are not suitable for this problem.
We therefore follow the heuristic numerical procedure de-
scribed by Mazenko [4], when he treats the conserved
scalar case. Applying this method it is possible to find
the pair of eigenvalues for any n and determine the scal-
ing function shape.

In this part of the work we solve Eq. (24) for several
values of n to determine the relevant features of the scal-
ing function f(z). In addition, we make a close com-
parison of the structure-factor scaling function g(g) with
expressions (21) and (22), motivated by the work of BH.

D. Results and discussion

We have solved Eq. (24) for n = 5, 20, and 50 in three
dimensions. Consider first the case n = 5. In Table I
we give the eigenvalues a and (3, together with results
for the zeros and turning points of f(z). Figure 1(a) is a
plot of f(x). An analysis in Fourier space allows a com-
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TABLE I. Information on the scaling function, for n =5,
extracted numerically in the 1/n approximation. The eigen-

values are a = 1.72743447 and g = —0.3179775.

Quantity T f(z)
First zero 2.512 0
First minimum 3.501 -0.146124
Second zero 5.025 0
Second maximum 5.998 0.049786
Third zero 7.433 0
Second minimum 8.372 -0.017997

parison with the BH results. Figure 1(b) shows the cor-
responding structure-factor scaling function g(q) (contin-
uous line) obtained by numerical Fourier transformation
of f(z). As the width is finite, the d-function approxi-
mation is not adequate in this case. Instead, we use the
quartic exponential and Gaussian forms Egs. (21) and
(22). We fit these functions to the numerical structure
factor using a nonlinear least-squares algorithm. The full
set of best-fit parameters for the three n values consid-
ered is presented in Table IV. The relation between the
three adjustable parameters, imposed by the real-space
condition f(0) = 1, is satisfied to within 3% for n = 5,
and to within 1% for n = 20 and 50.

Continuing with the n = 5 discussion, Fig. 1(b) shows
the best fits to the Gaussian (long dash line) and quartic
exponential (short dash line). The latter, motivated by
the BH large-n analysis, clearly gives a much better fit.

One particular feature that has not been considered in
the analytical treatment is the asymptotic behavior of the
structure factor for finite n. As can be observed in Fig.
1(b), the large-q tail of the structure factor seems to be
decaying more slowly than either the Gaussian or quartic
exponential fits. The origin of this feature is not clear.
Note that it is not related to the Porod tail [2, 12-14],
g(q) ~ 1/¢g%+™, present in the solution of the full equation
(5), since the approximate equation (24) does not possess
the short-distance singularity responsible for the tail. An
approximate treatment that does incorporate the Porod
tail will be given in Sec. V.

For n = 20 and 50, the relevant numerical features of
the scaling function are detailed in Tables IT and III. The
scaling functions for n = 20 and 50 are presented in Figs.
2(a) and 3(a), respectively, while Figs. 2(b) and 3(b)
give the corresponding structure factors together with
the best fits to Eqgs. (21) and (22). For these larger values

TABLE II. Information on the scaling function, for
n = 20, extracted numerically in the 1/n approximation. The
eigenvalues are ®=2.01748270 and 8 = —0.3292250.

g1f
0.8 [ (@)
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o
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X
L
2.5
q

FIG. 1. (a) Scaling function for n = 5 in the 1/n approx-
imation of Sec. IIIC. (b) The structure factor (continuous
line) and the best fits to the Gaussian (long dash line) and
the quartic exponential (small dash line) forms (22) and (21).

Quantity T f(z)
First zero 2.349 0
First minimum 3.2739 -0.169990
Second zero 4.656 0
Second maximum 5.597 0.067340
Third zero 6.913 0
Second minimum 7.832 -0.028345
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TABLE IIIL

Information on the scaling function, for

n = 50, extracted numerically in the 1/n approximation. The
eigenvalues are «=2.179330049 and 8 = —0.3487125.

Quantity T f(z)
First zero 2.243 0
First minimum 3.147 -0.179053
Second zero 4.463 0
Second maximum 5.383 0.075650
Third zero 6.641 0
Second minimum 7.545 -0.034130
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f(x)

T

(a)

of n, the fits to the quartic exponential form (21) are ex-
ceptionally good, and almost indistinguishable from the
continuous curves obtained from the numerical solution
of (24).

What the above solutions show is that the quartic ex-
ponential gives a very good fit to the numerical results—
much better than a simple Gaussian. It should be noted
that, with either of these functions, there is weak viola-
tion of the conservation law, because they do not vanish
at ¢ = 0. The violation is worse for the quartic expo-
nential, which has the value g;(0) = Aexp(—gn*/202).
For n = 5 the absolute error is g,(0) = 0.385, while the
corresponding results for n = 20 and 50 are 0.065 and
0.017, respectively. On the other hand, dividing the ab-
solute error by the peak value A of the structure factor
gives relative errors of 0.017, 3 x 1073, and 8 x 104 for
n = 5, 20, and 50, respectively. For the Gaussian fit,
the violation of the conservation law is much weaker, but
quality of the overall fit is considerably poorer.

At the end of Sec. IIIB we noted that comparison
with the analytic large-n result of BH suggests that the
quantity 1/202 in the fitting functions g;(q) and g»(q),
defined by Eqgs. (21) and (22), should approach the values
2 and 1/8¢2,, respectively, for large n. From the right side
of Table IV we see that for the quartic exponential fit,
1/20?% does indeed seem to be approaching 2, although
the convergence is rather slow. From the left side of the
table we find, for the Gaussian fit, that 8q2, takes the
values 11.78, 14.02, and 15.50 for n = 5, 20, and 50,
respectively, again getting closer to 1/202% for larger n.
The slow convergence is associated with the slow growth
(with n) of g,,, which increases only as (Inn)/* for n —
oo.

IV. C® EXPANSION FOR FINITE n:
THE CASE n = 2

As an alternative to the expansion to order 1/n, we
consider in this section a direct expansion of the full non-

TABLE IV. Parameters determined from the Gaussian
and quartic exponential fits, in the 1/n approximation for
several values of n.

Gaussian Quartic exponential
n A 1/20° qm A 1/20° qm
5 21.6374 9.3172 1.2133 22.0187 1.6830 1.2452
20 21.4899 11.9650 1.3237 21.6862 1.7463 1.3503
50 21.0019 13.5572 1.3920 21.1538 1.7848 1.4115
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linear equation (5) to leading nontrivial order in the cor-
relation function C, i.e., to order C®. (We recall that
an expansion beyond linear order is necessary to recover
standard scaling.) The motivation behind this approach
is that one might hope to use it for quite small values
of n, in particular the case n = 2 which was studied nu-
merically by SR [10]. In practice, of course, the resulting
equation for f(z) has a form identical to (24), except that
the coefficient of the f3 term is no longer simply 1/n.

SR argued that their solution for the scaling function is
well modulated by the large-n form f(z) = sin(gmz)/gmz
found by BH. This is our main motivation for study-
ing the finite-n case in this approximation. If we intro-
duce the leading nonlinear term in the equation for C for
fixed, finite n the equation will be identical in structure
to that studied in Sec. III. To obtain the expansion,
we proceed as follows. First, expand Eq. (6) for C to
order v3: C(v) = any[l + 7v2/2(n + 2) + O(~v*%)], with
an, =n[B((n+1)/2,1/2)])? /2r. Next, we evaluate the fi-
nal term in (5), vdC/dy = anv[1+37%/2(n+2)+0(v%)] .
Finally we eliminate v between C and v dC/d~y to obtain
vdC/dy = C + C3/n* + O(C®), with n* = (n + 2) a2.

This equation is the same as that studied in the preced-
ing section, but here there is an effective n*. Of course, in
the limit n — oo, n* — n, and we recover the limit stud-
ied before. Numerical solution in the real-space scaling
variable is the most convenient way of proceeding.

In order to compare our results with the simulations
of SR, we will consider specifically the case n = 2, d = 3.
For n = 2, the effective n is n* = 72/4 = 2.4674....
Solving the equation as described before, one can find
the scaling solution. Table V gives the positions of the
zeros and turning points. In Fig. 4(a) a plot of the scal-
ing function is presented, with the abscissa rescaled so
that the first zero of f(z) is at « = 1. The simulation
data of SR, scaled in the same way, are included in the
figure. Considering the relative crudeness of the C3 ap-
proximation, the agreement is remarkably good. In par-
ticular, the positions of the higher-order zeros, and the
positions and amplitudes of the turning points, are well
represented.

Another interesting feature of the numerical solution is
the existence of a quite slowly decaying large-g tail in the
structure factor, which fits the data reasonably well. In
fact it can be shown that the full theory, represented by
Eq. (5), generates the correct “Porod tail,” of the form
g(q) ~ g~ (@*n)_ This is related to a corresponding sin-
gular term of the form |z|™ (with an additional logarithm

TABLE V. Information on the scaling function, for n = 2
(n* = w?/4), extracted numerically in the C® approximation.
The eigenvalues are a = 1.548804 350 and 8 = —0.3336250.

Quantity z f(z)
First zero 2.619 0
First minimum 3.623 -0.126968
Second zero 5.250 0
Second maximum 6.239 0.038435
Third zero 7.755 0
Second minimum 8.704 -0.012472
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FIG. 4. (a) Scaling function for n = 2 in the C*® approxi-
mation of Sec. IV. The data points are the simulation data of
Siegert and Rao [10]. (b) The corresponding structure factor.
The data points are from Ref. [10].

for n even) in the short-distance expansion for f(z) [2,
12]. In order to generate this singular term, however, it
is necessary to retain the full nonlinear term ydC/dy in
(5), the singularity at small z being associated with the
singularity of the hypergeometric function (6) at v = 1.
This singularity is lost when the hypergeometric function
is truncated at O(C3), and with it the Porod tail. The
appearance of a slowly decaying tail in the numerical so-
lution is, therefore, slightly mysterious. We have been
unable to determine analytically the asymptotic form for
the truncated equation.

V. FINITE n RECONSIDERED

In this section we will study the finite-n case using v,
rather than C, as the fundamental correlation function.
This has the advantage that the expected short-distance
singularities in C are recovered using (6), giving the cor-
rect Porod tail in the structure factor. A drawback of
this approach, however, is that the exact conservation
law is lost. This is because, as in the previous treatment
of C, we find it necessary to truncate the equation for
7 in order to solve numerically. A solution of the full
nonlinear equation (5) would contain both the Porod tail
and perfect conservation.

We start from Eqgs. (5) and (6), which form a closed set
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giving the correlation function for any n. We proceed by
first rewriting (5) as an explicit differential equation for
v, using the chain rule. Next we solve it numerically with
appropriate boundary conditions. Finally, we use (6) to
calculate C. This mimics the approach used previously
for nonconserved vector fields. As before, it is convenient
to rewrite the equation in terms of the scaling variable
x = r/L(t), with L(t) = t}/4, and take a(t) = am/t'/?,
as in the large-n solution. In this way, the final fourth-
order, nonlinear differential equation for y(x), the nor-
malized two-point, equal-time correlation function of the
auxiliary field, is given by

1 d—1
C.
s S,
i

where C,, C,, are the first and second derivatives of (6)
and the operator V is gradient with respect to the scal-
ing variable, i.e., V2 = d2?/d2? + [(d — 1) /x| d/dz, where
d is the spatial dimension of the system. Explicit appli-
cation of the operator V2 in (25) generates derivatives of
C up to fourth order, i.e., C,,,,. In total the equation
has 18 terms, of which seven are linear. After dividing
through by C,, the various terms contain factors of the
form Cyy/Cy, Cyyy/Cy, and Cyyyy /Cy.

In order to find the appropriate boundary conditions,
we consider the nature of the solution for small and
large z. The asymptotic solution is identical to the
large-n case discussed in the previous sections. It con-
tains two physical solutions, which can be combined as
v(z) ~ exp(—3z*3/16) cos[(3v/3)z*/3/16 + @], with ¢
an arbitrary phase, and two unphysical solutions, y(z) ~
exp(3z%/3/8) and v(z) = const. In the small-z expan-
sion the solution is n dependent but, as before, it has an
undetermined parameter 3 in the quadratic term.

To keep the numerical analysis tractable, we will intro-
duce a truncation at O(v?) in the process of solving Eq.
(25). We expand out (6) in powers of vy, and keep the
terms that produce a differential equation with nonlin-
ear terms up to order 73, i.e., we write Cy/Cy = A,7,
Cyyy/Cy = An, Cyyyy/Cy = 0, to the required order,
with A, =3/(n+ 2).

With this truncation, the small-z solution is given by

y(z) =1+ Bz® + O(z*) , (26)

where (3 is an undetermined parameter in terms of which
all the higher-order coefficients in (26) can be expressed.
The quadratic small-z behavior generates, via Eq. (6),
the correct generalized power-law form for the tail of the
structure factor.

Using the asymptotic behavior of the hypergeometric
functions for v — 1, one can show that the leading small-
z singularity in the scaling function f(z) takes the form
[12]

n IT?[(n +1)/2]0[—n/2]

2r T[(n+2)/2] (2827)%  (27)

fsing(w) =

provided n is not an even integer. The latter cases can
be recovered by setting n = 2m + € in the general result,
letting € — 0, and picking up the term of order unity
(i-e., €°). This gives

2 D2[(n +1)/2]

z2)"/?Inz
= T2[(n ¢ 2)/2) 2% )" Ina,

foing(®) = —(=1)

n even . (28)

From these expressions the generalized Porod law [12,13]
for the structure-factor scaling function can be derived:
9(q) ~ g~ @+ for ¢ > 1.

In principle our solution has built in the nature of topo-
logical defects, through Eq. (6). We turn now to the
approximate solution of the differential equation for ~.
We proceed as before, integrating the equation of motion
[truncated at O(v3)] forward, with the boundary condi-
tions v(0) = 1, 4'(0) = 0, v"(0) = 28, v""(0) = 0 that
follow from (26). Then we eliminate the two unphysi-
cal solutions by adjusting the two unknown parameters
a and B. Finally, substituting the ~ solution back into
Eq. (6) we determine C(v) = f(z), the scaling function.
We have solved for n = 2 and n = 5 in three dimensions.
Table VI shows the eigenvalues a, 8 and the positions
and amplitudes for the zeros and extrema of the scaling
function for n = 2.

Figure 5(a) shows the form of the scaling function ob-
tained with this approach, with the data of SR included.
Despite the inclusion of the correct short-distance singu-
larity, this method is much less successful at describing
the data than our earlier C3 expansion, as a comparison
with Fig. 4 readily demonstrates. Presumably, the loss
of the exact conservation law, evident in Fig. 5(b) for
the structure-factor scaling function, is more important
for the general shape of the scaling function than getting
the short-distance singularity right. Somewhat surpris-
ingly, even the small-z behavior is much better described
by the C? truncation result displayed in Fig. 4(a). Al-
though the structure factor in Fig. 5(b) has a tail of the
correct g% form, the fit to the data in this regime is not
noticeably better than Fig. 4(b).

In fact, the case n = 2 is the worst case for the new
approximation: when one solves the problem for larger
n, the solution has improved. For instance, the n = 5
case, presented in Fig. 6, shows that the violation of the
conservation law is reduced relative to n = 2. All the
relevant information concerning the scaling function is

TABLE VI. Information on the scaling function extracted
numerically for n = 2 in the ¥* approximation. The eigenval-
ues are a = 1.543 50568 and 3 = —0.229 039 6.

Quantity T f(z)
First zero 2.701 0
First minimum 3.706 -0.11519
Second zero 5.332 0
Second maximum 6.320 0.03488
Third zero 7.836 0
Second minimum 8.786 -0.01129
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FIG. 5. (a) Scaling function for n = 2 with the correct

small-z singularity, obtained using the 4 approximation as
described in Sec. V. The data are from Ref. [10]. The fit is
clearly not as good as Figure 4(a), even at small z. (b) The
corresponding structure factor with the correct ¢~° Porod
tail.

detailed in Tables VI and VII. A close comparison of
Table VII for n = 5 and Table I for the 1/n expansion
approach with n = 5 shows that the two first digits, in
the minimum and maximum amplitudes, are the same.

VI. SUMMARY

In summary, we have studied, in the context of the
Gaussian auxiliary field approach, the dynamics of phase
separation in systems with conserved vector order pa-
rameter. All our results follow standard dynamic scal-
ing: there is no multiscaling behavior for finite n. We

TABLE VII. Information on the scaling function ex-
tracted numerically for n = 5 in the 4® approximation. The
eigenvalues are a = 1.718 78960 and 8 = —0.260 360.

Quantity z f(z)
First zero 2.561 0
First minimum 3.542 -0.14268
Second zero 5.070 0
Second maximum 6.042 0.04844
Third zero 7.481 0
Second minimum 8.420 -0.01742
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FIG. 6. (a) Scaling function for n = 5 within the v* ap-
proximation. (b) The corresponding structure factor with the
correct ¢~8 Porod tail.

have solved differential equations for the scaling function
using three different truncation schemes: truncation at
order 1/n, at order C3, and at order 3. The structure
factor for the 1/n truncation can be fitted very well with
a quartic exponential function, motivated by the analytic
solution of BH for large n. A truncation of the funda-
mental equation at order C3 yields an identical equation,
but with n replaced by an effective value n*. For n = 2,
this approach gives remarkably good agreement with the
simulation results of SR. This is all the more remark-
able given that the t'/4 growth law obtained for n = 2 is
not quite right: the correct behavior of the characteristic
length scale being L(t) ~ (tInt)'/% for n = 2 (and d > 2)
[7]. The C? truncation respects the conservation law, but
does not correctly incorporate the short-distance singu-
larities responsible for the Porod tail in the structure fac-
tor. The latter can be recovered through the ~-solution
approach, at the expense of losing the conservation law
(at least when we truncate the v expansion). For n = 2
it is clear that respecting the conservation law is more
important. For larger n, all three approaches converge.
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